APPENDIX M

TECHNICAL MEMORANDUM REGARDING ELEVATED ALPHA SURFACE ACTIVITY

Technical Memorandum

To: Hamide Kayaci, RPM, HPNS

From: Ed Palser

Date: September 23, 2014

Subject: Technical Approach: Elevated Alpha Surface Activity on Weathered Outdoor Metal

Surfaces; Parcel D-1 Phase II Radiological Remediation and Support, Hunters Point

Naval Shipyard

Contract/TO: N62473-10-D-0808, CTO-0004 Navy DCN: ITSI-0808-0004-0032

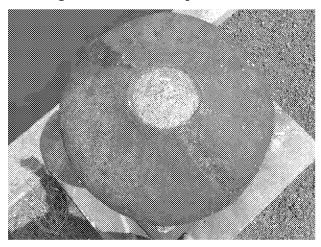
In performing radiological surveys of ship berths at HPNS, Gilbane has encountered elevated alpha activity in the range of 100 to 400 dpm/100 cm² on the surfaces of various weathered outdoor metal surfaces, particularly pier components, which cannot be readily explained by radon and is not suspected to be due to contamination. The release criterion for ship berth-related alpha activity is 100 dpm/100 cm².

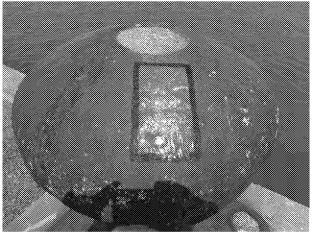
Background

The *Historical Radiological Assessment* determined that the ship berths at HPNS were radiologically impacted primarily as the result of Operation Crossroads decontamination efforts and secondarily due to the possibility of radium devices existing in the area. The radionuclides of concern for the ship berths are Sr-90, Cs-137, Ra-226, and Pu-239. Of particular interest here are the alpha-emitting radionuclides of concern Ra-226 and Pu-239. For simplicity in execution, residual radioactivity on structure surfaces measured as gross alpha activity is assumed to be either Ra-226 or Pu-239, unless isotopic analysis is performed or a technical basis for an alternate approach is documented and approved for use by the Navy. Based on this assumption, the measured alpha activity on the pier components exceeds the release criterion for alpha activity.

Elevated alpha activity has been found consistently on or near heavily weathered (i.e., rusted) metal surfaces. This same issue has been encountered and studied by previous contractors; however, no resolution was achieved. Previous studies have ruled out radioactive contamination from Ra-226 or Pu-239, radon accumulation/build-up, and removable surface activity as the source of the elevated alpha activity. It has been suspected to be the result of a paint component or a physical phenomenon such as static charge build-up from wind. Regardless, no definitive answer has been developed as to the source of the elevated alpha surface activity and how it should be handled.

Research has identified another possible source of elevated alpha activity as electrostatic charge attracting radon progeny, specifically Po-210. The plate-out of Po-210 on outdoor metal structures has been confirmed at several DOE sites. The Po-210 deposition is readily observable primarily on galvanized metal surfaces or metal that is rusty, oxidized, or weathered and is possibly due to an electrostatic charge. Other radon progeny does not appear to adhere and accumulate the same as Po-210.


Method


Building upon previous studies, Gilbane collected samples of metallic shavings, rust particles and paint scraped from four bollards located at Ship Berth 14. Scrapings were collected from a 100 cm² area of elevated alpha activity (i.e., ranging from 200 to 400 dpm/100 cm²) on the top of each bollard. Figure 1 shows a representative bollard from Ship Berth 14 before and after a sample of scrapings is collected.

Gilbane Federal | 2730 Shadelands Drive | Walnut Creek, CA 94598 | Tel: 925-946-3100 | Fax: 925-256-8998 www.gilbanefederal.com

Figure 1 - Photo of Representative Bollard Before and After Scraping Sample Collected

Measurements of total alpha surface activity were taken before and after each scraping was collected to verify the alpha activity was captured in the scrapings themselves (see attached radiological survey). The measurements are summarized in Table 1. Surface measurements were taken with a Ludlum Model 43-93 100-cm² zinc sulfide (silver activated) dual phosphor scintillation detector coupled to a Ludlum Model 2360 alpha/beta dual-channel scaler.

Table 1 – Total Alpha Surface Activity Measurements

Sample	Alpha Activity	(dpm/100 cm ²)
Location	Before Sampling	After Sampling
Bollard #1	218	23
Bollard #2	251	17
Bollard #3	264	17
Bollard #4	348	23

The scrapings from the four bollards were combined into a single composite sample. The sample was sent to ARS International, LLC, in Port Allen, Louisiana, for analysis. ARS is accredited under the DoD Environmental Laboratory Accreditation Program and the CDPH National Environmental Laboratory Accreditation Program. Five types of analyses, listed in Table 2 below, were performed.

Table 2 – Laboratory Sample Analyses

Analytical Method	Method Number
Gamma Spectroscopy	ARS-007/EPA 901.1M
Gross Alpha/Beta	ARS-003/EPA 900.0M
Isotopic Pu by Alpha Spectroscopy	ARS-026/Eichrom ACW-03
Po-210 by Alpha Spectroscopy	ARS-034/HASL-PO-01 RC
Sr-90 by Gas Flow Proportional Counting	ARS-032/Eichrom SRW01

Discussion of Results

The laboratory analytical results (see attached laboratory report) are summarized in Table 3. Radionuclides listed with no reported activity were not detected as present in a concentration above the sample MDC. K-40 is naturally occurring and is found throughout nature wherever there is potassium. Be-7 is formed in the atmosphere and deposits onto the earth's crust. The presence of both Cs-137 and

Technical Approach: Elevated Alpha Surface Activity on Weathered Outdoor Metal Surfaces

Sr-90 in the sample is not necessarily indicative of contamination from legacy Navy operations. Both are fission products that are routinely encountered in the environment as a result of the atmospheric testing of nuclear weapons. The ratio between the Be-7, and Cs-137 and Sr-90 are consistent with background levels associated with the aforementioned atmospheric testing of nuclear weapons. Pb-210 and Pb-214 are progeny of Rn-222. Pb-214 is minutes removed from the decay of Rn-222 and Pb-210 with its 22 year half-life, once present, dissipates slowly.

Table 3 – Laboratory Analytical Results

Analytical	Analyte	Activity	Uncertainty	MDC	Decay
Method	1 44444 5 0 0	(pCi/g)	(pCi/g)	(pCi/g)	Mode
Gamma	Be-7	2.821	1.048	1.010	β
Spectroscopy	K-40	2.248	1.063	1.770	β
	Co-60		0.209	0.147	β
	Cs-137	0.947	0.190	0.158	β
	Eu-152		0.170	0.282	β
	Eu-154		0.095	0.159	β
	T1-208		0.146	0.180	β
	Pb-210	9.876	1.985	2.020	β
	Bi-212		1.880	2.180	α/β
	Pb-212		0.132	0.203	β
	Bi-214		2.089	1.120	β
	Pb-214	0.328	0.192	0.324	β
	Ra-226		1.372	2.290	α
	Ra-228	***	0.325	0.588	β
	Pa-234		2.604	1.360	β
	Th-234		0.000	2.500	β
	U-235		0.433	0.592	α
	U-238		0.000	1.860	α
	Am-241		0.110	0.184	α
Gross	Gross Alpha	24.684	6.848	4.233	α
Alpha/Beta	Gross Beta	24.345	5.913	1.855	β
Isotopic Pu	Pu-238		0.101	0.219	α
_	Pu-239/240		0.159	0.295	α
Po-210	Po-210	19.743	1.725	0.044	α
Sr-90	Sr-90	0.519	0.342	0.241	β

Neither Ra-226 nor Pu-239 was detected as present in the sample. Therefore, a conclusion can be made that the elevated alpha surface activity is not due to contamination by alpha-emitting radionuclides of concern. The only alpha-emitting radionuclide detected above the sample MDC was Po-210, whose activity accounts for 80% of the reported gross alpha activity (i.e., $19.743 \text{ pCi/g} \pm 24.684 \text{ pCi/g} = 0.800$).

Figure 2 shows the natural decay series for radon. Radon decay products are various radioisotopes of Po, Pb, and Bi. Of these radioisotopes, those with the longest half-lives are Pb-210 (22 years) and Po-210 (140 days). The rest have half-lives less than 30 minutes and therefore disappear rapidly when removed from the radon feeder source. As radon decays, its electrically charged progeny attach themselves to dust particles, which deposit onto horizontal surfaces, such as the top of pier components. If the presence of Po-210 was solely due to this deposition mechanism, then sample results would have shown the several Po, Pb, and Bi radioisotopes to be present in similar concentrations in some form of secular equilibrium. But this is not the case. Po-210 parent radionuclides are not present in similar concentrations. So then,

Technical Approach: Elevated Alpha Surface Activity on Weathered Outdoor Metal Surfaces

the presence of Po-210 at concentrations much higher than is parent radionuclides is consistent with plate-out of Po-210 on outdoor metal structures as has been confirmed at other sites.

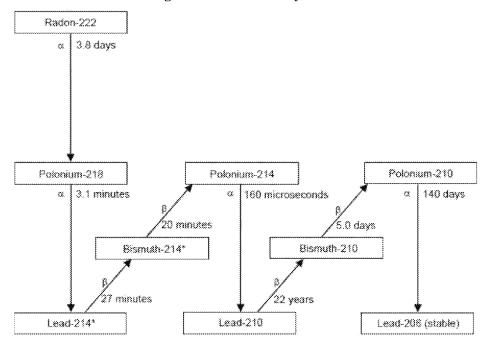


Figure 2 – Radon Decay Series

Conclusion

The presence of Po-210 is not unexpected due to radon decay in the environment and its long half-life (140 days) relative to other radon progeny. The plate-out of Po-210 on outdoor metal structures is a recognized phenomenon that is readily observable primarily on galvanized metal surfaces or metal that is rusty, oxidized, or weathered. As analytical results indicate, Po-210 is clearly the dominant alpha-emitter present in the scraping sample collected from a series of bollards in Ship Berth 14. Po-210 activity composes 80% of the measured gross alpha activity in the sample.

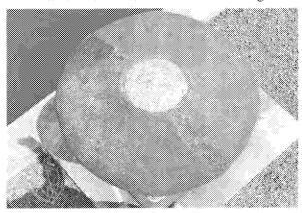
Therefore, once this technical memorandum is approved for use by the Navy, total alpha surface activity measurements of weathered outdoor metal surfaces, such as pier components at HPNS, will be multiplied by a correction factor of 0.2 to remove the alpha activity contribution from the plate-out of Po-210.

Other than Po-210, the several radionuclides listed in Table 3 with reported activity are naturally occurring beta-emitters. A case could be made for a correction factor for beta activity. However, Gilbane has not encountered problems with elevated beta activity above the release criterion and does not believe there is a need for a beta correction factor at this time.

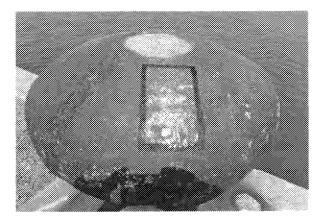
Attachments

HPNS Radiological Survey No. 07204.0004-1107-SBCH, dated 06 Aug 2014, ITSI Gilbane (13 pages).

Laboratory Analysis Report ARS1-14-01921, ARS International, LLC, Port Allen, Louisiana (9 pages).


Technical Approach: Elevated Alpha Surface Activity on Weathered Outdoor Metal Surfaces

G							RADIOL	OGICAI	. SURVE	Y FORM	I
CONTRAC	T NO / TO N 10-D-0808	VO: N62473-		PROJECT Rad Remedia	TITLE / LOG tion D-1, Phas		Š	133	SI GILBANE PROJECT NO: 07204.0004		
Survey No.:	07204.0004	-1107-SBCH		Date: 8/6/2014 Location: SB 14				Survey Type: SBCH			
	Danny Bulila	in	~	*************************************	0.0	******************************	Ed Palser		<i>477</i>		***************************************
T	ch Printed N	ame	and a graph of the second seco	Signature		RS	O Printed N	ame	9:0:0:0:0:0:0:0:0:0	Signature	- Annie Control
	•••••		***************************************		Instrum	ent(s)					
Model	Serial	Cal Due Date	Probe Model	Probe Serial	Cal Due Date	BKG α	BKG β	BKG y	BKG µr/Hr	Eff. α	Eff. B
2360	278618	8/29/2014	43-93	PR311163	8/29/2014	0.2	137.1	N/A	N/A	0.08	0.11


Ship Berth 14

7/22/2014	1	Bollard # 1 Before
	2	Bollard # 1 After
	3	Bollard # 2 Before
	4	Bollard # 2 After
	5	Bollard # 3 Before
	6	Bollard # 3 After
	7	Bollard # 4 Before
	8	Bollard # 4 After

EXAMPLE - Bollard Prior to Sanding

EXAMPLE - Bollard After Sanding

Comments: See Attached Page for Removable Results.

2360 BKGD taken from instrument set up sheet (2 minute).

Direct static readings were collected at each sample location before the sample media was removed and immediately after. No swipes were taken, see volumetric annalytical data for details.

Page 1 of 2

RADIOLOGICAL SURVEY FORM PROJECT TITLE / LOCATION: CONTRACT NO / TO NO: TIST GILBANE PROJECT NO: 07204,0004 Rad Remediation D-1, Phase II / HPNS N62473-10-D-0808 Survey No.: 07204.0004-1107-SBCH Date: 8/6/2014 Location: SB 14 Survey Type: SBCH Net β/γ Net a μR/Hr Gross β/γ Gross a Location # (dpm/100 cm²) (dpm/100 cm²) 218 354 352 34 # 1 Before 0001 23 7 254 -89 4 # I After 0002 251 7 298 105 39 #2 Before 0003 3 17 7 219 -243 #2 After 0004 7 41 264 #3 Before 0005 349 330 7 -199 3 17 #3 After 0006 229 0007 378 457 54 348 #4 Before 7 204 -309 4 23 #4 After 8000 N/A N/A N/A N/A N/A N/A N/A Gross Static Results Are 2 Min. Counts. Comments: a 20 dpm/100cm2 Release Limits: Removable β 200 dpm/100cm2

β 1000 dpm/100cm2

Date: 8/6/2014

Date: 8/6/2014

a 100 dpm/100cm2

Total **α 100 dpr** Technician Name Print: Danny Bulilan

Technician Name Signature;

Reviewed by:

ED_006787_00001848-00007

Page 2 of 2

SCALER INSTRUMENT SET-UP WORKSHEET

Contract Number / Task Order Number: N62473-10-D-0808 / 0004 Project Title / Location:

Parcel D1 Phase II / Hunters Point Naval Shipyard

ITSI Gilbane Project Number:

7204.0004

		Source Res	ponse:	Beta	ion		(Blue c	ells for input	<u></u>
Instrume	nt / SN:	2360/27861	8	Cal. Due	: 29-Aug-	14	Setup Dat	e: 08-Jul-1	4
Probe Typ		43-93/PR311		Cal. Due	~		Source Cert. Date		
	ınician: C. B				· more compar		Source St		
	cation: HPN					S	urface Emission Rat	e: 27,870	particles/min
							Source Typ	e: Tc-99	
1. Total	Background	l Counts obs	erved:				HV Check/Setting	g: <u>800</u>	
Chi-	squared Ca	lculations							
124	9	-25.2		632.			kground Count Time		minutes
2 29	11	16.9	3	283.9	ww.	Source	e/Sample Count Time	e:2	minutes
3 24	****************	-28.2		792.4	nne				
426	·	-6.		37.8	***				
5 27		3.9		14.8	***				
631		42.9		1836.1	TT.				
728		7.3		61.6	***		Accesses Consular	^·	7 & G. animen
8 27	*****************	-2.	0000	4.6	~~		Average Counts	*£	14.Z GREES
9 <u>29</u> 10 26		23.5		568.8	rec		Average Count Rate	1.	37 4 ann
11 27	~~~~~	-12.2 4.5		147.6 23.5			wanada ooniii wara		W1. 1 Op. 11
12 23		-42.3		1776.6	MAY .		Standard Deviation		25.4 counts
13 25		-23.2		535.9	me.		W1011WW101 WV 13001V13	···	and the state of t
14 28		9.9		97.0	AAA.		Sum of Squares	= 12	.255
15 23		-41.2		1693.3	MAY.			***************************************	- Annual Control of the Control of t
16 29	photococococococococococococococococococo	21.9	nno vonnonni	477.4		ea Con	rection Factor (ACF)	***	1:00 100cm ²
17 30		33.9		1145.8		****		·	
18 24		-26.2		683.8	0004	Scan	Observation Interval	m	1.00 sec
19 31	***************************************	37.9		1432.6	•••			***************************************	
20 27	*****	2.9		8.1					
***************************************		(
	squared Cal	nts observed iculations -224		50,086	3				
2 12,8	194	-30]	888	<u> </u>				
3 12,8	101	-123		15.080	<u> </u>				
4 12.8	803	-121		14,593	3				
5 12,8	******	-93		8,612			Average Counts	= 12,	.924 counts
6 13,2	··········	286	·· · · · · · · · · · · · · · · · · · ·	81,910					
7 13.2	enreinmerrin	280		78,512	·		Average Count Rate	≖	.462 cpm
8 12.8		-91		8,245			Otomoloud Davilation	-	124 animta
9 <u>12,8</u> 10 12,9		-29 20		829 408	₩.		Standard Deviation	60000000000000000000000000000000000000	124 COUINS
11 13,0	*****	133		17,742			Sum of the Squares	= 293.	977
12 12.8		-61	**	3.697	444		woo, wi soo watmana		
13 12,9	***************************************	17		296	-	C	hi-Squared Statistic	= 22	2.75
14 12,8	~~~~~	-51	-	2,581	···			***************************************	KARRAAARA
15 12.8	ecocoecococococo,	-28		773			Acceptable Range	s for Chi-x*	
16 12,9	rimmer marketine.	50		2,520			8.91 to 32		
17 13,0		78		6,115		(assu	imes n-1 degrees of fr		ailed
18 12,9		-1		1			listribution @ 95% cor		
19 12,8	194	-30	}	888	Ī		-		
20 12,9	38	14		202					
		C)						
					Instrument			9 cpm/dpm	
Net source	ce cts =	12,650	counts		Surface	Efficier	$ncy(E_s) = 0.500$	0 cpm/dpm	
Std. Dev.	Net=	127	counts		Total	Efficier	$ncy(E_T) = 0.113$	5 cpm/dpm	
Net Ct. R	tate =	6,325	, срт				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			- ·				MDCR = 125	cpm (@ 95	% confidence level)
MDA Sca	an=	1,559.79	dpm/100	cm ²			***************************************		
MDA Sta		493.29	dpm/100						
Bkg cou	nt range	223	to	325	(2 sigma)				
Source c	ount range	12,675	to	13,173	(2 sigma)				
Secure Histories	r J. L.	•	***		***************************************	. 8 - 18			
					<u>.</u>	*************	5		
Technica	l Reviewer				l	Date			

Ref. Date

Half-life (years)

Current Date

SCALER INSTRUMENT SET-UP WORKSHEET

 $Act_{r} = Act_{r} \times e \cdot ((.693/t)T)$

Contract Number / Task Order Number:

Project Title / Location:

iTSI Gilbane Project Number:

N62473-10-D-0808 / 0004

Parcel D1 Phase II / Hunters Point Naval Shipyard

Equation:

7204.0004

Source Activity Correction Worksheet

Isotope Tc-99
ID # K7-321
Initial Activity (dpm) 27,870

27,870 15-Sep-13

2.13E+05 7.77E+07 days (Half-life) 8-Jul-14 296.00 days (I)

Corrected Surface Emission Rate =

27,870 particles/min

Equations

Chi-squared Calculations

χ2=Σ(.n-n)/2

s; = 2.09 counts

s_i = minimum detectable number of net source counts in scan observation interval i

i = scan observation interval (sec)

Minimum Detectable Count Rate (MDCR)

 $MDCR = s_i \times 60/i$

s, = d' x SQRT(b)

d' = 1.38 (source: MARSSIM Table 6.5, pg. 6-40; assumes correct decision rate of 95%)

b, = number of background counts in scan observation interval i

Scan Minimum Detectable Concentration (Scan MDC)

Scan MDC = MDCR/(SQRT(p) \times E₇ \times ACF)

p = surveyor efficiency (source: MARSSIM Section 6.7.2.1, pg. 6-42)

Static MDC

MDC =
$$\frac{3+3.29(R_st_s[1+t_s/t_s])^{12}}{(t_s)(E)(A)}$$

R_h = number of background counts over background count time interval to

t_a = sample count time interval (min)

t_b = background count time interval (min)

E = total (instrument + surface) efficiency (cpm/dpm)

A = area correction factor (i.e., detector active area divided by 100) (cm²)

Review:

4----7-8-14

Technical Reviewer Date

ED_006787_00001848-00009

SCALER INSTRUMENT SET-UP WORKSHEET

Contract Number / Task Order Number: Project Title / Location: ITSI Gilbane Project Number: N62473-10-D-0808 / 0004 Parcel D1 Phase II / Hunters Point Naval Shipyard 7204.0004

	Source Response:	Alpha	(Blue cells for input)
Instrument / SN:	2360/278618	Cal. Due:	29-Aug-14 Setup Date: 08-Jul-14
	43-93/PR311163	Cal. Due:	
Technician: C.B	and the second s	Ou	Source SN: K7-323
Location: HPN			Surface Emission Rate: 23,650 particles/min
3000 00 00 00 00 00 00 00 00 00 00 00 00	***		Source Type: Th-230
1, Total Background	Counts observed:		HV Check/Setting: 800
Chi-squared Ca	lculations		
1 0	-0.4	0.1	Background Count Time: 2 minutes
20	-0.4	0.1	w
30	-0.4	0.1	rui.
42	1.7	2.7	
50	-0.4	0.1	w .
60	-0.4	0.1	M.
7 0	-0.4	0.1	
80	0.4	0.1	
9	0.7	0.4	m .
10 0	-0.4	0.1	**
110	-0.4 -0.4	0.1 0.1	w .
***************************************		0.1	
	-0.4 -0.4	0.1	w
14 <u>0</u> 15 0	-0.4	0.1	· · · · · · · · · · · · · · · · · · ·
***************************************		0.1	···
16 0	-0.4 0.7	V.1 0.4	
17 <u>1</u> 18 0		0.1	M-
***************************************	-0.4 1.7	2.7	
***************************************	0.7	5./ 0.4	~
201	<u>~</u>		*
	· ·		
2. Total Source Cou	nts observed:		
Chi-squared Ca	lculations		
1 14,498	-79	6,225	· ·
2 14,546	-31	955	; ;
3 14,466	-111	12,299	
4 14,442	-135	18,198	
5 14,703	126	15,901	w
6 14,534	-43	1,840	
7 14,459	<u>-118</u>	13,900	•
8 14,485	-92	8,446	**************************************
9 14,662	85	7,242	···
10 14,579	2	4	
11 14,816	239	57,169	<u>.</u>
1214,911	334	111,623	···
13 14,327	-250	62,450	Chi-Squared Statistic = 30.43
14 14,458	-119	14,137	
15 14,566	-11	119	
16 14,857	280	78,456	8 91 to 32.85
17 14,637	60	, 3,612 123	
18 14.588	11		
19 14,403	-174	30,241 581	
20 14,601	24	201	w.
	Q		Instrument Efficiency (E,) = 0.3082 cpm/dpm
Ni se manana ataun	4 8 MY277		***************************************
Net source cts =	14,577 counts		
Std. Dev. Net =	153 count	8	Total Efficiency (E ₇) = 0.0770 cpm/dpm
Net Ct. Rate =	7,288_cpm		# Martin Martin Anna Anna Anna Anna Anna Anna Anna An
			MDCR = N/A cpm (@ 95% confidence level)
MDA Scan=		100 cm²	
MDA Static=	44.73 dpm/	100 cm²	
Bkg count range	0 to	2	(2 sigma)
Source count range			(2 sigma)
named mann sanda	erpars su	3 77 , W.W. H.	Am and the same
	***************************************		7-8-14
Technical Reviewer			Date

Ref. Date

Half-life (years)

Current Date

SCALER INSTRUMENT SET-UP WORKSHEET

Act, = Act, x e-((.693/t)T)

counts

Contract Number / Task Order Number:

N62473-10-D-0808 / 0004

Project Title / Location:

ITSI Gilbane Project Number:

7204.0004

Source Activity Correction Worksheet

Isotope ID# Initial Activity (dpm) Th-230 K7-323

23,650

8-Jul-14

15-Sep-13 7.54E+04

Equation:

Parcel D1 Phase II / Hunters Point Naval Shipyard

2,75E+07 days (Half-life) 296.00 days (t)

Corrected Surface Emission Rate =

23,650 particles/min

Equations

Chi-squared Calculations

χ2=Σ(n-n)^2

0.07

s, = minimum detectable number of net source counts in scan observation interval i

i = scan observation interval (sec)

Minimum Detectable Count Rate (MDCR)

MDCR = s, x 60//

s, = d' x SQRT(b,)

d' = 1.38 (source: MARSSIM Table 6.5, pg. 6-40; assumes correct decision rate of 95%)

b, = number of background counts in scan observation interval /

Scan Minimum Detectable Concentration (Scan MDC)

Scan MDC = MDCR/(SQRT(p) x E+ x ACF)

p = surveyor efficiency (source: MARSSIM Section 8.7.2.1, pg. 6-42)

Static MDC

MDC =
$$\frac{3+3.29(R_st,[1+t/4s])^{12}}{(t_s)(E)(A)}$$

 $R_{\rm b}$ = number of background counts over background count time interval $t_{\rm b}$

t_s = sample count time interval (min)

t_s = background count time interval (min)

E = total (instrument + surface) efficiency (cpm/dpm)

A = area correction factor (i.e., detector active area divided by 100) (cm 2)

Review:

7-8-14

Designer and Manufacturer LUDLUM MEASUREMENTS, INC. 01 501 Opk Street Scientific and Industrial 10744 Dutchtown Road CERTIFICATE OF CALIBRATION Instruments 325-235-5494 965-392-4801 Sweetwater TX 79556, U.S.A. Knowsie, TN 37932 U.S.A ENVIRACHEM, INC. CUSTOMER ORDER NO. 20229136/396032 Mig. Ludium Measurements, Inc. Model 2350 Senal No. Ludium Measurements, Inc. Mfa Model 43-93 Serial No. Call Date 29-Aug-13 Cal Due Date 29-Aug-14 Cal Interval 1 Year Meterface Check mark. Vapplies to applicable instr. and/or detector IAW mfg. spec. T. 73 F 26 % At-701.8 mm Hq New instrument 10-20% Quit of Tol. Requiring Repair Other-See comments ✓ Machanical ck. √ Meter Zeroed Background Subtract Input Sens, Linearity F/S Resp ck √ Resetick. Window Operation √ Geotrapism √ Audio ck. √ Alarm Setting ox. ✓ Batt. ck. (Min. Volt)-2.2 VDC --- RS-232 Port OK -Calibrated in accordance with LIMI SOP 14.8 rev 12/05/89 Calibrated in accordance with LMI SOP 14.5 rev 02/07/57 Instrument Volt Ser-800 1501 √ HV Readout (2 points) Ref./Inst. 500 V Ref/lost 12001 2000 Firmware Version. (EEPROM Settings) Alpha Threshold: User Time: Beta Threshold: Alpha Alarm Beta Window Beta Alarm. Overload Set To Simulate 14,87 /eak. Instrument calibrated with a 34 coable Model 2360 Date 8 12912013 High voltage set with detector NOT LORINGIAO. Calibration Date Due: 8 12912014 COMMENTS:

	RANGEA	IULTIPLIER		FERENCI L POINT	**		ISTRUMEN IS FOUND			ISTRUME ETER RE	
	×1000		400k			ŕ	405		C 191		
	x1000		100k							- Yas	
	×100		40k :				101			/00	
	x100		10k (405			400	
	x10			om Dm			10.1			100	
	×10			upni Spin			405			400	
	x1		400				101			100	
	x1		100				¥0			40	
				(Sec.) 1			10.	f	e .	1.06	
~~~~	"Uncertainty with	·····	20%	***************************************					ALL Ran	ge(s) Calibra	sted Electronically
	REFERENCE			INSTRU	JMENT		REFERENC	26	INSTRUM	ENT	INSTRUMENT
igital	CAL POINT	RECEIVE	).	METER	READING*		CAL POINT	r	RECEIVE	D	METER READING
aadout	400kq; 40kq; 4kq; 400q; 40q;	m		42	034 (b) 203 (b) 1	Log Scola				·····	
e carte stic	an ayatam contorna i	as that the above inserumenn Potation members or move to the requirements of ANSIA	CSL 2340-1	rum moseprea « -1994 and ANS)		io the Nobor Thysical co	Withdrape of Sox restablish supposes	Keros and Ted en Janyad by	988, 18860, typsa o	i celibration tecn	olmsski Maus Doense No. (O-196)
		its and/or Sources				34 78	1 1101	1616	1686 8	165 3717	CO 8719CO
806	146 70897	70410 E551	E892	G112	M565	3-394	S-1054 T-	304 Të	79 F1008	H 710082	Y962
√ Als	oha S/N	Pu239 SN 7053	4	Beta S/N	Tc99Sf	1.5260.S/	Y90SN 5281	O	her		
V 10	500 S/N	190566		Oscillosco	pe S/N			< W.	isimeter S/	Ni.	86250390
	ed Bv		tuy	and the second	<b></b>		Det	e <i>D</i>	9.20	9-17	
Calibrate	:	230									

Falled



Designer and Manufacturer of Scientific and Industrial Instruments

#### LUDLUM MEASUREMENTS, INC.

901 Oak Street 325-225-6494

Sweetwater, TX 70856, U.S.A.

16744 Duichtown Road 365-392-4501

Knowalie TN 37902 U.S.A

#### Bench Test Data For Detector

Detector	43-93	Serial No	PR 311163	 Order#.	20229136/3960.	37
Gustomer	ENVIRACHEM, I	NC		Alpha Input Sensitivity	120	mV
Counter	2360	Serial No	278618	8eta Input Sensitivity	3.5	mV
Count Time	1Minute			Seta Window	30	ώV
Other				Distance Source to Detector	Sulface	

High	Back	ground	Isotope Size	PG 39 949001pm	isolope Size	T L 9 9 932001pm	isotope Size	. A to the A me Abe here
Voltage	Alpha	Seta	Alpha	Seca	Alpha	Beta	Alpha	Séta
750	2	131	4 <i>669</i>	354	26	1136/	2	20485
725	2	128	5170	332	32	/ 4732	2	25523
500		237	552	Y30	16	18093	4	30774
825	1	276	55 70	505	23	20973	4	33633
850	2	295	5667	569	22	23433	Ÿ	33415

Gas Proportional detector count rate decreased

Gas proportional datector count rate decreased

10% after 5 hour static test using 39" cable and alpha/beta counter.

Signature

Date 29. AUG. 13

FORM CAB 02/06/2013

Page 2 0 2

Serving The Nuclear Industry Since 1962

 $_{
m S}$  =10% after 15 hour static test using 38" cable.

Model 2360 Log Data Date: 08/29/2013 Time: 11:17:31 AM Page: 1

Header 1: John Q. Public Header 2: SN: 278618 Header 3: SN: PR311163 Header 4: Site: Bidg 1 Header 5: RM 008, S. Wall

Header 6: Comment

Location:

Calibration Due Date: 08/29/2014 Model 2360 Date: 08/29/2013 Model 2360 Time: 10:40:33 AM

Logged Samples: 0

User PC Scaler Count Time: 0.1 minutes

Alpha Ratemeter Alarm Setpoint: 399999 Beta Ratemeter Alarm Setpoint: 399999 Alpha + Beta Ratemeter Alarm Setpoint: 999999

Alpha Scaler Alarm Setpoint: 999999 Beta Scaler Alarm Setpoint: 999399 Alpha - Beta Scaler Alarm Setpoint: 999999



Isotope Products Tel 661-309-1010 Fax 661-257-8303

# CERTIFICATE OF CALIBRATION BETA STANDARD SOURCE

24937 Avenue Tibbitts

Valencia, California 91355

Radionuclide:

Tc-99

Half-life:

 $(2.13 \pm 0.05)E+05$  years

Catalog No.:

EAB-099-47LB

Source No.:

K7-321

Customer:

P.O. No.:

Reference Date: Contained Radioactivity: RES, LLC

10557 EZIP

15-Sep-13 12:00 PST

22.83 844.7 nCi -

Physical Description:

A. Capsule type:

Disk (47 mm OD x 0.76 mm THK)

B. Nature of active deposit:

Electrodeposited and diffusion bonded Technetium metal

C. Active diameter/volume:

D. Backing:

E. Cover:

Stainless steel

None

41 mm

CAUTION! DELICATE SURFACE

DO NOT WIPE ACTIVE AREA

Bq

#### Radioimpurities:

None detected

#### Method of Calibration:

This source was assayed using a windowless internal gas flow proportional counter.

#### Uncertainty of Measurement:

4,4,				
A.	Type A (random) uncertainty:	<b>±</b>	0.4	%
В.	Type B (systematic) uncertainty:	±	3.0	%
	Uncertainty in aliquot weighing:	<b>±</b>	0.0	%
D.	Total uncertainty at the 99% confidence level:	土	3.0	%

#### Notes:

- See reverse side for leak test(s) performed on this source.
- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from "Table of Radioactive Isotopes", edited by Virginia Shirley, 1986.
- This source has a working life of 2 years.
- This source had a surface emission rate of 27870 β/min in 2π on 28-Aug-13.

EZIP Ref. No.: 1684-91

.... ISO 9001 CERTIFIED -

THE LEAK TEST(S) INDICATED BY THE CHECKED BOX(ES) WAS(WERE) APPLIED TO DETERMINE THE INTEGRITY OF THE SOURCE DESCRIBED ON THE FRONT SIDE. THE LEAK TESTS INDICATED BELOW WERE EITHER TAKEN DIRECTLY FROM ISO 9978:1992 OR DERIVED FROM THE LEAK TEST METHODS LISTED IN ISO 9978:1992. THE REGULATORY LIMIT FOR LEAK TEST RESULTS IS <5 nCi (185 Bg) FOR BOTH ALPHA AND BETA-GAMMA ACTIVITY. LEAK TEST RESULTS MARKED BELOW CONTAINED <5 nCi (185 Bg) OF REMOVABLE ACTIVITY UNLESS OTHERWISE STATED ON THIS CERTIFICATE.

	Standard Wipe Test  The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.
	Special Wipe Test  The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation counter.
	Distilled Water Soak Test  The source was immersed in distilled water and maintained at (50 ± 5)°C for a minimum of four hours or room temperature (20 ± 5)°C for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.
	Liquid Scintillation Soak Test  The source was immersed for a minimum of 3 hours at room temperature(20 ± 5)°C in a figuid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.
	Gas Source Test  The source was placed in a vacuum desiccator and maintained at a pressure of <10 mm Hg for not less than 12 hours.  The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.
	Ampoule Leak Test  The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.
	Bubble Leak Test  The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.
300000000	Wipe Test for Industrial Ni-63 Sources  The sources were wipe tested by an approved sampling plan, which called for either 100% of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.
ĺ	
***************************************	Pressure Test for Triotech Kr-85 Sources  Prior to filling the vessel with Kr-85 gas, the vessel was evacuated to <5 mm Hg, the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.
<u></u>	Prior to filling the vessel with Kr-85 gas, the vessel was evacuated to <5 mm Hg, the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss



24937 Avenue Tibbitts Valencia, California 91355

Tel 661-309-1010 Fax 661-257-8303

# CERTIFICATE OF CALIBRATION ALPHA STANDARD SOURCE

Contained Radioactivity:

Radionuclide:

Th-230

Half-life:

 $(7.54 \pm 0.03)E+04$  years

Catalog No.:

EAB-230-47LB

Source No.:

K7-323

Customer:

P.O. No.:

Reference Date:

10557 EZIP 15-Sep-13 21.09

RES. LLC

12:00 PST nCi .

780.3 Bq

CAUTION!

DELICATE SURFACE

DO NOT WIPE ACTIVE AREA

Physical Description:

A. Capsule type:

Disk (47 mm OD x 0.76 mm THK)

B. Nature of active deposit:

Electrodeposited and diffusion bonded oxide

C. Active diameter/volume:

41 mm Stainless steel

D. Backing: E. Cover:

None

Radioimpurities:

None detected

Method of Calibration:

This source was assayed using a windowless internal gas flow proportional counter.

#### Uncertainty of Measurement:

A. Type A (random) uncertainty: 0.4 % B. Type B (systematic) uncertainty: 3.0 % C. Uncertainty in aliquot weighing: 0.0 % D. Total uncertainty at the 99% confidence level: 3.0 %

#### Notes:

- See reverse side for leak test(s) performed on this source.
- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from "Table of Radioactive Isotopes", edited by Virginia Shirley, 1986.
- This source has a working life of 2 years.
- This source had a surface emission rate of 23650 α/min in 2π on 28-Aug-13.

EZIP Ref. No.: 1684-91

- ISO 9001 CERTIFIED -

THE LEAK TEST(S) INDICATED BY THE CHECKED BOX(ES) WAS(WERE) APPLIED TO DETERMINE THE INTEGRITY OF THE SOURCE DESCRIBED ON THE FRONT SIDE. THE LEAK TESTS INDICATED BELOW WERE EITHER TAKEN DIRECTLY FROM ISO 9978:1992 OR DERIVED FROM THE LEAK TEST METHODS LISTED IN ISO 9978:1992. THE REGULATORY LIMIT FOR LEAK TEST RESULTS IS <5 nCi (185 Bq) FOR BOTH ALPHA AND BETA-GAMMA ACTIVITY. LEAK TEST RESULTS MARKED BELOW CONTAINED <5 nCi (185 Bq) OF REMOVABLE ACTIVITY UNLESS OTHERWISE STATED ON THIS CERTIFICATE

<b></b>	Standard Wipe Test  The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.
	Special Wipe Test The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation cocktail and counted in a liquid scintillation counter.
300000000000000000000000000000000000000	Distilled Water Soak Test  The source was immersed in distilled water and maintained at (50 ± 5)°C for a minimum of four hours or room temperature (20 ± 5)°C for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.
	Liquid Scintillation Soak Test  The source was immersed for a minimum of 3 hours at room temperature(20 ± 5)°C in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.
	Gas Source Test  The source was placed in a vacuum desiccator and maintained at a pressure of <10 mm Hg for not less than 12 hours.  The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.
,,,,,,,,,,	Ampoule Leak Test  The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.
	Bubble Leak Test  The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.
	Wipe Test for Industrial Ni-63 Sources  The sources were wipe tested by an approved sampling plan, which called for either 100% of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.
	Pressure Test for Triotech Kr-85 Sources  Prior to filling the vessel with Kr-85 gas, the vessel was evacuated to <5 mm Hg, the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.
<u> </u>	Leak Test Not Applicable  The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or certified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide.

2609 North River Road, Port Allen, Louisiana 70767 (800) 401-4277 -- FAX (225) 381-2996



# **ARS International, LLC**

Laboratory Analysis Report

ARS1-14-01921

Prepared for:

**ITSI** Gilbane

Ed Palser 2730 Shadelands Drive Walnut Creek, CA 94598

epalser@gilbaneco.com

Phone: (505) 400-4076

Project Manager Review

Management Review

Notes: ARS International, LLC assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

Contact Person: Questions regarding this analytical report should be addressed to:

**Project Manager** 

ProjectManagers@amrad.com

Phone: 225.381.2991 Fax: 225.381.2996



LELAP Cert# 01949

### 2609 North River Road, Port Allen, Louisiana 70767



1 (800) 401-4277 FAX (225) 381-2996

**ARS Sample Delivery Group:** ARS1-14-01921

**Client Sample ID:** 04SBD-14 (B1-B4)-001

**Sample Collection Date:** 07/22/14

Sample Matrix: Soil/Solid/Sludge

**Request or PO Number:** N/A

**ARS Sample ID:** ARS1-14-01921-001

**Date Received:** 07/24/14

**Report Date:** 08/15/14

Analysis Description	Analysis Results	CSU +/- 2 s	MDC	DLC	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
K-40	2.248	1.063	1.770	0.885		pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
CO-60	-0.020	0.209	0.147	0.074	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
BE-7	2.821	1.048	1.010	0.505		pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
CS-137	0.947	0.190	0.158	0.079		pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
EU-152	0.040	0.170	0.282	0.141	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
EU-154	0.000	0.095	0.159	0.080	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
TL-208	-0.057	0.146	0.180	0.090	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
PB-210	9.876	1.985	2.020	1.010		pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
BI-212	-0.228	1.880	2.180	1.090	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
PB-212	0.087	0.132	0.203	0.102	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
BI-214	0.251	2.089	1.120	0.571	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
PB-214	0.328	0.192	0.324	0.162		pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
RA-226	0.198	1.372	2.290	1.145	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
RA-228	0.031	0.325	0.588	0.294	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
PA-234	-0.608	2.604	1.360	0.680	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
TH-234	0.000	0.000	2.500	1.250	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
U-235	0.066	0.433	0.592	0.296	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
U-238	0.000	0.000	1.860	0.930	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
AM-241	-0.002	0.110	0.184	0.092	U	pCi/g	ARS-007/EPA 901.1M	07/24/14 16:05	JDT	N/A
GROSS ALPHA	24.684	6.848	4.233	2.005		pCi/g	ARS-003/EPA 900.0M	07/25/14 15:18	СВ	N/A
GROSS BETA	24.345	5.913	1.855	0.909		pCi/g	ARS-003/EPA 900.0M	07/25/14 15:18	СВ	N/A
PU-238	0.032	0.101	0.219	0.065	U	pCi/g	ARS-026/Eichrom ACW-03	07/29/14 15:38	JВ	8%
PU-239/240	0.081	0.159	0.295	0.103	U	pCi/g	ARS-026/Eichrom ACW-03	07/29/14 15:38	JB	8%
PO-210	19.743	1.725	0.044	0.022		pCi/g	ARS-034/HASL-PO-01 RC	07/30/14 16:24	BJS	46%
SR-90	0.519	0.342	0.515	0.241		pCi/g	ARS-032/Eichrom SRW01	08/08/14 16:59	BJS	83%
NOTES:										

*************************

VLM

Project Manager Review

**Notes:** ARS International, LLC assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of ARS International, LLC. The results in this report pertain only to the samples tested and are intended solely for the use of the client.



1 (800) 401-4277 FAX (225) 381-2996

# **QC Results Report**

Sample Delivery Group: ARS1-14-01921
Date Received: 07/24/14

**Laboratory Control Sample Evaluation** 

Analysis Batch	QC Type	Analyte	Analysis Results	CSU 1 (2s)	MDC	Expected Value	Qual	Report Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	Percent Recovery (%)	LCS Acceptance Range
ARS1-B14-01743	LCS	Sr-90	20.07	3.14	0.54	19.59		pCl/g	ARS-032/EPA 905.0	8/8/14 16:59	BJS	102	75%-125%

#### **Blank Evaluation**

Analysis Batch	QC Type	Analyte	Analysis Results	CSU 1 (2s)	MDC	Expected Value	Qual	Report Units	Analysis Test Method	Analysis Date/Time	Analysis Technician
ARS1-B14-01743	MBL	Sr-90	0.17	0.31	0.52	NA	U	pCi/g	ARS-032/EPA 905.0		BJS

**RER Duplicate Evaluation** 

Analysis Batch	QC Type	Analysis Description	Result 1	CSU 1 (2s)	Result 2	CSU 2 (2s)	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	RER	RER AcceptanceR
ARS1-B14-01743	LCSD	Sr-90	20.07	3.14	18.96	2.97		pCi/g	ARS-032/EPA 905.0	8/8/14 16:59	BJS	0.18	ange < 1

**DER Duplicate Evaluation** 

Analysis Batch	QC Type	Analysis Description	Result 1	CSU 1 (2s)	Result 2	CSU 2 (2s)	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	DER	DER AcceptanceR ange
ARS1-B14-01743	LCSD	Sr-90	20.07	3.14	18.96	2.97		pCI/g	ARS-032/EPA 905.0	8/8/14 16:59	BJS	0.51	< 3

Project Manager Review

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate# 30658

NELAP Certificate # E87558



# **QC Results per Analytical Batch**

Analytical Satch	ARS1-B14-01589
SDG	ARS1-14-01921
Analysis	Gross Alpha/Beta (Soil, Sludge, Waste,
Analysis Test Method	ARS-003/Gas Proportional Counter
Analysis Code	GPC-A-003
Report Units	pCI/g

A	cceptable QC Performance	Ranges	
QC Sample Type	P	erformance Items and Ranges	
Laboratory Control Sample	Recovery (%):	> 75	< 125
Matrix Spike	Recovery (%):	> 60	< 140
	Repli	cate Error Ratio (RER):	< 1
Duplicate	Duplie	cate Error Ratio (DER):	< 3
	Relative Percer	nt Difference (RPD %):	≤ 25

Laboratory Control	Sample		Analysis Date	07/25/14 15:18 07/25/14 15:18	Analysis Technician	AMRAD\ AMRAD\	
Analysis Batch Sample 10	QC Type	Analyte	Results	CSU (2s)	Expected Value	LCS Rec (%)	MDC
ARS1-B14-01589-01	LCS	GROSS ALPHA	6.9	1.6	6.3	109	0.18
ARS1-B14-01589-01	LCS	GROSS BETA	49	11	39	125	0.20

Duplicate RER/DER	/RPD		Analysis Date	07/25/14 15:18 07/25/14 15:18	Analysis Technician		CBAILEY CBAILEY
Analyte	Result LCS	CSU LCS (2s)	Results LCSD	CSU LCSD (2s)	RER	DER	199
GROSS ALPHA	6.87	1.63	6.38	1.52	0.16	0.43	7.4
GROSS BETA	49.0	11.5	48.4	11.3	0.03	8.07	1.2

Method Blank		Analysis Date	07/25/14 15:18 07/25/14 15:18	Analysis Technician		CBAILEY CBAILEY
Analysis Batch Sample ID	QC Type	Analyte	Results	CSU (2s)	MDC	Qual
ARS1-814-01589-03	MBL	GROSS ALPHA	-0.018	0.078	0.14	U
ARS1-814-01589-03	MBL	GROSS BETA	-0.04	0.12	0.20	U

17m

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.



## **QC Results per Analytical Batch**

Analytical Batch	ARS1-B14-01598
SDG	ARS1-14-01921
Analysis	Plutonium Solid, Waste, Biota, Sediment,
Analysis Test Method	ARS-026/Eichrom ACW-03-15
Analysis Code	ASP-A-023
Report Units	pCi/g

Acceptable QC Performance Ranges										
QC Sample Type	C Sample Type Performance Items and Ranges									
Laboratory Control Sample	Recovery (%):	< 125								
Matrix Spike	Recovery (%):	< 140								
	Re	plicate Error Ratio (RER):	< 1							
Duplicate	Du	plicate Error Ratio (DER):	< 3							
	Relative Per	cent Difference (RPD %):	≤ 25							

Laboratory Control			Analysis Date	07/29/14 15:38	Analysis Technician	JB	/RD
Analysis Batch Sample 10	QC Type	Analyte	Results	CSU (2s)	Expected Value	LC5 Rec (%)	MDG
ARS1-B14-01598-01	LCS	PU-239/240	5.10	0.71	5.36	95	0.016

Duplicate RER/DER	/RPD		Analysis Date	07/29/14 15:38	Analysis Technician	JBYRD		
Analyte	Result LCS	CSU LCS (2s)	Results LCSD	CSU LCSD (2s)	RER	DER	RPD	
PU-239/240	5.10	0.71	4.87	0.68	0.17	0.46	4.6	

Method Blank	Analysis Date	07/29/14 15:38 07/29/14 15:38	Analysis Technician		RD RD	
Analysis Batch Sample ID	QC Type	Analyte	Results	C5U (2s)	MDC	Qual
ARS1-B14-01598-03	MBL	PU-238	-0.016	0.016	0.069	U
ARS1-B14-01598-03	MBL	PU-239/240	0.000	0.028	0.069	U

VIM

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.



# **QC Results per Analytical Batch**

Analytical Batch	ARS1-B14-01573
SDG	ARS1-14-01921
Analysis	Gamma Spec (Solid)
Analysis Test Method	ARS-007/EPA 901.1M
Analysis Code	GAM-A-020
Report Units	pCl/g

A	Acceptable QC Performance Ranges											
QC Sample Type Performance Items and Ranges												
Laboratory Control Sample	Recovery (%):	> 75	< 125									
Matrix Spike	Recovery (%):	> 60	< 140									
	Repli	cate Error Ratio (RER):	< 1									
Duplicate	Dupli	cate Error Ratio (DER):	< 3									
	Relative Percer	nt Difference (RPD %):	≤ 25									

Laboratory Control	Sample	Analysis Date	07/24/14 13:35	Analysis Technician	8	ZF	
Analysis Batch Sample ID	GC Type	Analyte	Results	CSU (26)	Expected Value	LCS Rec (%)	MDC
ARS1-B14-01573-01	LCS	AM-241	48800	3900	40838	119	410
ARS1-814-01573-01	LCS	CO-60	57500	2300	50514	114	480
ARS1-B14-01573-01	LCS	CS-137	47300	2000	40351	117	210

Duplicate RER/DEF	l/RPD	Analysis Date	07/24/14 14:47	Analysis Technician	8.	ZF	
Analyte	Result LCS	CSU LC5 (24)	Results LCSD	CSU LCSD (2s)	REF	DER	RPD
AM-241	48800	- 3923	46700	3499	0.28	0.78	4.4
CO-60	57500	2301	53600	2151	0.87	2.48	7.0
CS-137	47300	1981	44320	1826	0.79	2.18	6.5

Method Blank	Analysis Date	07/24/14 16:53	Analysis Technician	זטנ		
Analysis Batch Sample TD	QC Type	Analyte	Results	CSU (2s)	MDC	Qual
AR\$1-814-01573-03	MSL	AM-241	0.4	1.1	1.9	U
ARS1-814-01573-03	MBL	CO-60	0.59	0.94	1.6	U
ARS1-B14-01573-03	MBL	CS-137	-0.3	5.8	1.9	U



Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.



1 (800) 401-4277 FAX (225) 381-2996

# **QC Results Report**

Sample Delivery Group:

ARS1-14-01921

Date Received:

07/24/14

**Laboratory Control Sample Evaluation** 

0000004	Analysis Batch	QC Type	Analyte	Analysis Resulta	CSU 1 (2s)	MDC	Expected Value	Qual	Report Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	Percent Recovery (%)	LCS Acceptance
ARS:	1-B14-01600	l.CS	PO-210	6.380	0.559	0.014	6.484		pCl/L	ARS-030/Eichrom OTW-01	7/30/14 16:24	BJS	98	Range 75%-125%

#### **Blank Evaluation**

Anai Bat	QC Type	Anziyte	Analysis Results	CSU 1 (2s)	MDC	Expected Value	Qual	Report Units	Analysis Test Method	Analysis Date/Time	Analysis Technician
ARS1-B1		PO-210	0.007	0.002	0.041	NA	U	pCi/L	ARS-030/Eichrom OTW-01	7/30/14 16:24	BJS

**RER Duplicate Evaluation** 

Analysis Batch	QC Type	Analysis Description	Result 1	CSU 1 (2s)	Result 2	CSU 2 (2s)	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	RER	RER AcceptanceR	
ARS1-B14-01600	LCSD	PO-210	6.380	0.559	5.900	0.517	UUUU OO	pCi/L	ARS-030/Eichrom OTW-01	7/30/14 16:24	BJS	0.45	ange	1

**DER Duplicate Evaluation** 

Analysis Batch	QC Type	Analysis Description	Result 1	CSU 1 (2s)	Result 2	CSU 2 (2s)	Qual	Analysis Units	Analysis Test Method	Analysis Date/Time	Analysis Technician	DER	DER AcceptanceR
ARS1-B14-01600	LCSD	PO-210	6.380	0.559	5.900	0.517		pCi/L	ARS-030/Eichrom OTW-01	7/30/14 16:24	BJS	1.26	ange < 3

Project Manager Review

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate# 01949

NELAP Certificate # E87558



1 (800) 401-4277 · Fax (225) 381-2996

#### Notes:

#### Comments:

- 1.0) Soil and Sludge analysis are reported on a wet basis or an as received basis unless otherwise indicated.
- 2.0) Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified.
- 3.0) Modified analysis procedures are procedures that are modified to meet the certain specifications. An example may be the use of a water method to analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of "m" to the procedure number (i.e. 900.0M).
- 4.0) Derived Air Concentrations and Effluent Release Concentrations are obtained from 10 CFR 20 Appendix B.
- 5.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
- 6.0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
- 7.0) U-238 is determined via secular equilibrium with its daughter, Thorium 234 (Gamma Spectroscopy only).
- 8.0) All gamma spectroscopy was performed utilizing high purity germanium detectors (HPGe).
- 9.0) ARS makes every attempt to match sample density to calibrated density; however, in some cases, it is not practical or possible to do so and data results may be affected (Gamma Spectroscopy only).
- 10.0) Gamma spectroscopy results are calculated values based on the ORTEC® GammaVision ENV32 Analysis Engine.

#### Method References:

- 1.0) EPA 600/4-80-032; Prescribed Procedures for the Measurements of Radioactivity in Drinking Water, August 1980.
- 2.0) Standard Methods for Examination of Water and Waste Water, 18th, 1992.
- 3.0) EPA SW-846; Test Methods for Evaluating Solid Waste, Third Edition, (9/86). (Updated through 1995).
- 4.0) EPA 600/4/79-020; Methods for Chemical Analysis of Water and Waste, March 1983.
- 5.0) HASL 300
- ARS-040; An LCSD is not reported with this process. The criteria for the LCS/LCSD analysis for reproducibility have not been established for Low Level Tritium analysis. A prepared standard for Low Level Tritium has not been developed. As a result, the standard we use is based on the dilution of a verified conventional tritium standard. The volume required for Low Level Tritium analysis, in addition to the lack of an available Low Level Tritium standard, introduce variability into the LCS/LCSD analysis that does not represent the actual sample analysis. The preferred measure for reproducibility is to run a duplicate analysis of a sample.

#### Definitions:

1.0)	ND	Not detected above the detection limit (non-detect).
2.0)	MDC	(Minimum Detectable Concentration) minimum concentration of the analyte that ARS can detect utilizing the specific analysis
3.0)	MBL	Method Blank
4.0)	DO	Duplicate Original
5.0)	DUP	Method Duplicate
6.0)	MS/MSD	Matrix Spike/Matrix Spike Duplicate
7.0)	S	Spike
8.0)	RS	Reference Spike
9.0)	*SC	Subcontracted out to another qualified laboratory
10.0)	NR	Not Referenced
11.0)	N/A	Not Applicable
12.0)	**	False Positive due to interference from
13.0)	U	Activity is below the MDC
14.0)	LCS/LCSD	Laboratory Control Standard/Laboratory Control Standard Duplicate
15.0)	DLC	Decision Level Concentration (ANSI N42.23) or critical level

Notes: ARS International assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Cert# 01949

### **CHAIN-OF-CUSTODY RECORD**

ITSI Gilbane Ed Palser Walnut Creek

COC # HPSD1-0147



(505) 400-4076 EXT: epalser@itsi.com

Project Name: HPSD1						Laboratory: AMERICAN RADIATION SERVICES (ARS), INC., PORT ALLEN, LA											
Project Number: 07204.0004							Point of contact: Please insert point of contact, insert laboratory phone number, insert e-mail										
WBS Code: 0058000							Ship to: Please add laboratory address										
Comments:  Equipment:					Analytical Test Method	- Solid Pu-23940	- Solid Po-210	Gross Alpha & Beta	- Solid Ra-226 and CS-137	- Solid Sr-90 and Sr-T	- Ra-226 and CS-137 Screening	Code Matrix SO SOIL  Code Container/Preservatives  1* 250 mL plastic jar,					
	Event: Ship Berth Surveying				Ang	A01RM	A01RM	E900	E901.1	E905.0	GS186						
	Sample ID	Matrix	Date	Time	Samp Init.							Location ID	Sample Type		(ft bgs) Bottom		
1	04SBD-14B1-001	so	7/22/2014	0800		Х	X	Х	х	Х	Х	04SBD-14B1-001	N1	0.00	0.00		
2	04SBD-14B2-001	so	7/22/2014	0900		Х	×	Х	Х	Х	х	04SBD-14B2-001	N1	0.00	0.00		
3	04SBD-14B3-001	so	7/22/2014	0940		Х	Х	Х	Х	Х	х	04SBD-14B3-001	N1	0.00	0,00		
4	04SBD-14B4-001	so	7/22/2014	0630		Х	x	х	х	Х	х	04SBD-14B4-001	N1	0.00	0.00		
Cooler # 1 Turnaround Time: 0 Days		<u></u>	<del>†                                    </del>	${f +-}$	<del> </del>	<del> </del>		1				L					

* Composite sample as per Ed taulser. Jot 7-24-19

Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time	Shipping Date / Carrier / Airbill Number
R. CO	C7 23 2014	1400	Som & Buston	07-2314	1400	Shipping Date: 7/23/2014
	nonnanana MV					
						Recevled by Laberatory: (Signature, Date, Time) & condition
					4	1/Hillio 17.24.4@11.04/00.0000.
				***************************************	<u> </u>	Page 1 of 1